cfb_2024_sched |> dplyr::filter(conference %in%c("ACC", "SEC", "Big 12", "Big Ten")) |> dplyr::distinct(team_name, .keep_all =TRUE) |> ggplot2::ggplot(ggplot2::aes(x = conference, y = team_total, group = conference)) + ggplot2::geom_boxplot(outliers =FALSE,color ="#474747", fill ="transparent", stat ="boxplot" ) + ggthemes::theme_fivethirtyeight() + ggplot2::theme(axis.text.x = cfbplotR::element_cfb_logo(size =1.25), axis.text.x.top = cfbplotR::element_cfb_logo(size =1.25),legend.position ="none" ) + ggplot2::scale_x_discrete(position ="top", # Add x-axis to the toplabels =c("ACC", "Big 12", "Big Ten", "SEC") ) + ggplot2::labs(title ="2024 College Football: Preseason Win Totals for 'Power' Conferences",subtitle ="Shows the range of preseason win totals for teams in the ACC, Big 12, Big Ten, and SEC. \nTeams with the highest (9.5 and up) and lowest (4.5 and below) win totals in each league are highlighted.",caption ="Data via FanDuel + cfbfastR + cfbplotR | July 24, 2024 \nPlot by Chris (@dadgumboxscores) | Bless your chart",x ="", y ="Win Totals") + ggplot2::scale_y_continuous(breaks =seq(0, 10.5, 3.5),labels =c(0, 3.5, 7.0, 10.5) ) -> base_plot