w_ten <- ita %>% mutate(color = if_else(Team == "UNC Chapel Hill", "unc", "not-unc")) %>%
ggplot(aes(x = Points, y = Rank, color = color)) +
geom_point(aes(size = factor(color))) +
scale_color_manual(values = c("#d5d5d5", "#56a0d3")) +
scale_x_continuous(breaks=seq(0, 75,25), limits = c(0,75)) +
scale_y_continuous(breaks=seq(0, 125,25), limits = c(0,125)) +
annotate(
geom = "table",
x = 65,
y = 45,
label = list(edit_table),
table.theme = ttheme_gtbw(colhead = list(bg_params = list(fill = "floralwhite")),
core = list(bg_params = list(fill = "floralwhite")),
size = 1)
) + theme_me() +
theme(legend.position = "none", plot.title = element_markdown()) +
labs(
x = "Points",
y = "Rank",
title = "<span style='color:#56a0d3;'>North Carolina</span> \nwomen's tennis is good",
subtitle ="Singles ITA rankings as of April 18.",
caption = "dadgumboxscores | April 20, 2023 | data via ITA"
) +
annotate(
"text",
x = 65,
y = 20,
label = "Fiona Crawley \n is the #1 player \n in the country",
family = "Chalkboard Bold",
size = 4,
color = "#56a0d3"
) +
annotate(
"text",
x = 43,
y = 105,
label = "Seven players in top-100 \nMost of any school",
family = "Chalkboard Bold",
size = 4,
color = "#56a0d3"
)
# save it
ggsave(
"w_plot.png",
w_ten,
w = 6,
h = 6,
dpi = 600,
type = 'cairo'
)
w_ten